
Adventures in Babysitting:

Introduction to Web Scraping in

Python
Julia Piaskowski

2020/02/09

virtualenv: pycas2020

https://github.com/jpiaskowski/pycas2020_web_scraping

2/33

https://github.com/jpiaskowski/pycas2020_web_scraping
https://github.com/jpiaskowski/pycas2020_web_scraping

But, Who Actually Reads These A to Z?

(spoiler: not me)

me and my programming books
4/33

The Main Things to Know in a Web Scraping

Project:

Is it worth the trouble?

Is it ethical?

Tools available in BeautifulSoup and requests

What to look for in html code

Parsing json objects with json

Rudimentary pandas skills

<pro-tip> All you need to know about html is how tags work

</pro-tip>

·

·

·

·

·

·

·

5/33

What to Look for in a Scraping Project:

A sizeable amount of structured
data with a regular repeatable
format.

Identical formating is not required,
but the more edge cases present,
the more complicated the scraping
will be.

·

·

6/33

Ethics in Scraping

Accessing vast troves of information
can be intoxicating.

Just because it’s possible doesn’t mean it
should be done

7/33

Legal Considerations

(note: I have zero legal training - this is not legal advice!)

Are you scraping copyrighted material?

Will your scraping activity compromise individual privacy?

Are you making a large number of request that may overload or damage a
server?

Is it possible the scraping will expose intellectual property you do not own?

Are there terms of service governing use of the website and are you following
those?

Will your scraping activities diminish the value of the original data?

·

·

·

·

·

·

8/33

Dollar Stores are Taking Over the World!

Store in Cascade, Idaho

Goal: Extract addresses for all Family Dollar stores in Idaho.

9/33

The Starting Point:

https://locations.familydollar.com/id/

10/33

https://locations.familydollar.com/id/
https://locations.familydollar.com/id/

Step 1: Load the Libraries

import requests # for making standard html requests

from bs4 import BeautifulSoup # magical tool for parsing html data

import json # for parsing data

from pandas import DataFrame as df # data organization

11/33

Step 2: Grab Some Data from Target Web Address

Beautiful Soup will take html or xml content and transform it into a complex tree
of objects. Here are several common types:

page = requests.get("https://locations.familydollar.com/id/")

soup = BeautifulSoup(page.text, 'html.parser')

BeautifulSoup - the soup (the parsed content)

Tag - main type of bs4 element you will encounter

NavigableString - string within a tag

Comment - special type of NavigableString

·

·

·

·

12/33

Step 3: Determine How to Extract Relevant

Content from bs4 Soup

This process can be frustrating.

13/33

Step 3: Finding Content…

Start with one representative example and then scale up

Viewing the page’s html source code is essential

·

·

Run at your own risk:-

print(soup.prettify())

14/33

Step 3: Finding Content…

It is usually easiest to browse via “View Page Source”:

What attribute or tag sets your content apart from the rest?

·

·

15/33

Step 3: Finding Content by Searching

Searching for ‘href’ does not work.

But searching on a specific class is often successful:

dollar_tree_list = soup.find_all('href')

dollar_tree_list

[]

dollar_tree_list = soup.find_all(class_ = 'itemlist')

for i in dollar_tree_list[:2]:

print(i)

<div class="itemlist"><a dta-linktrack="City index page - Aberdeen" href="https://locations.familydollar.com/i

<div class="itemlist"><a dta-linktrack="City index page - American Falls" href="https://locations.familydollar

16/33

Step 3: Finding Target Content by Using ‘contents’

Next, extract contents from this BeautifulSoup “ResultSet”.

type(dollar_tree_list)

<class 'bs4.element.ResultSet'>

len(dollar_tree_list)

48

example = dollar_tree_list[2] # Arco, ID (single representative example)

example_content = example.contents

print(example_content)

[<a dta-linktrack="City index page - Arco" href="https://locations.familydollar.com/id/arco/">Arco]

17/33

Step 3: Finding Content in Attributes

Find out what attributes are present in the contents:

Note: contents usually return a list of exactly one item, so the first step is to index
that item.

Extract the relevant attribute:

example_content = example.contents[0]

example_content.attrs

{'dta-linktrack': 'City index page - Arco', 'href': 'https://locations.familydollar.com/id/arco/'}

example_href = example_content['href']

print(example_href)

https://locations.familydollar.com/id/arco/

18/33

Step 4: Extract the Relevant Content

Result: a list of URL’s of Family Dollar stores in Idaho to scrape

city_hrefs = [] # initialise empty list

for i in dollar_tree_list:

 cont = i.contents[0]

 href = cont['href']

 city_hrefs.append(href)

check to be sure all went well

for i in city_hrefs[:2]:

print(i)

https://locations.familydollar.com/id/aberdeen/

https://locations.familydollar.com/id/american-falls/

19/33

Repeat Steps 1-4 for the City URLs

page2 = requests.get(city_hrefs[2]) # representative example

soup2 = BeautifulSoup(page2.text, 'html.parser')

20/33

Extract Address Information

from type="application/ld+json"

arco = soup2.find_all(type="application/ld+json")

print(arco[1])

<script type="application/ld+json">

{

"@context":"https://schema.org",

"@type":"Schema Business Type",

"name": "Family Dollar #9143",

"address":{

"@type":"PostalAddress",

"streetAddress":"157 W Grand Avenue",

"addressLocality":"Arco",

"addressRegion":"ID",

"postalCode":"83213",

"addressCountry":"US"

},

"containedIn":"",

21/33

Use ‘contents’ to Find Address Information

Extract the contents (from the second list item) and index the first (and only) list
item:

Next, convert to a json object:
(these are way easier to work with)

arco_contents = arco[1].contents[0]

arco_contents

'\n\t{\n\t "@context":"https://schema.org",\n\t "@type":"Schema Business Type",\n\t "name": "Family Dollar

arco_json = json.loads(arco_contents)

22/33

Extract Content from a json Object

A json object is a dictionary:

type(arco_json)

<class 'dict'>

print(arco_json)

{'@context': 'https://schema.org', '@type': 'Schema Business Type', 'name':

'Family Dollar #9143', 'address': {'@type': 'PostalAddress', 'streetAddress': '157 W

Grand Avenue', 'addressLocality': 'Arco', 'addressRegion': 'ID', 'postalCode':

'83213', 'addressCountry': 'US'}, 'containedIn': '', 'branchOf': {'name': 'Family

Dollar', 'url': 'https://www.familydollar.com/'}, 'url':

'https://locations.familydollar.com/id/arco/29143/', 'telephone': '208-881-5738',

'image': '//hosted.where2getit.com/familydollarstore/images/storefront.png'}

23/33

Extract Content from a json Object

arco_address = arco_json['address']

arco_address

{'@type': 'PostalAddress', 'streetAddress': '157 W Grand Avenue',

'addressLocality': 'Arco', 'addressRegion': 'ID', 'postalCode':

'83213', 'addressCountry': 'US'}

24/33

Step 5: Put It All Together

Iterate over the list store URLs in Idaho:

locs_dict = [] # initialise empty list

for link in city_hrefs:

 locpage = requests.get(link) # request page info

 locsoup = BeautifulSoup(locpage.text, 'html.parser')

parse the page's content

 locinfo = locsoup.find_all(type="application/ld+json")

extract specific element

 loccont = locinfo[1].contents[0]

get contents from the bs4 element set

 locjson = json.loads(loccont) # convert to json

 locaddr = locjson['address'] # get address

 locs_dict.append(locaddr) # add address to list

25/33

Step 6: Finalise Data

locs_df = df.from_records(locs_dict)

locs_df.drop(['@type', 'addressCountry'], axis = 1, inplace = True)

locs_df.head(n = 5)

streetAddress addressLocality addressRegion postalCode

0 111 N Main Street Aberdeen ID 83210

1 253 Harrison St American Falls ID 83211

2 157 W Grand Avenue Arco ID 83213

3 177 Main Street Ashton ID 83420

4 747 N. Main St. Bellevue ID 83313

26/33

Results!!

df.to_csv(locs_df, "family_dollar_ID_locations.csv", sep = ",", index = False)

27/33

A Few Words on Selenium

“Inspect Element” provides the code for what is displayed in a browser.

28/33

A Few Words on Selenium

“View Page Source” - provides the code for what requests will obtain

There are plugins modifying the source code - so, it should be accessed after the
page has loaded in a browser.

29/33

A Few Words on Selenium

Requires a webdriver to retrieve the content

It actually opens a web browser, and this info is collected

Selenium is powerful - it can interact with loaded content in many ways

After getting data, continue to use BeautifulSoup as before

·

·

·

·

url = "https://www.walgreens.com/storelistings/storesbycity.jsp?requestType=locator&state=ID"

driver = webdriver.Firefox(executable_path = 'mypath/geckodriver.exe')

driver.get(url)

soup_ID = BeautifulSoup(driver.page_source, 'html.parser')

store_link_soup = soup_ID.find_all(class_ = 'col-xl-4 col-lg-4 col-md-4')

30/33

The Penultimate Slide

Read the Manuals

This talk available at:

https://github.com/jpiaskowski/pycas2020_web_scraping

Perservere

https://beautiful-
soup-4.readthedocs.io/en/latest/

https://selenium.dev/

·

·

31/33

https://github.com/jpiaskowski/pycas2020_web_scraping
https://github.com/jpiaskowski/pycas2020_web_scraping
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://selenium.dev/
https://selenium.dev/

~ After Becoming a Web Scraping Master ~

https://github.com/jpiaskowski/pycas2020_web_scraping

32/33

https://github.com/jpiaskowski/pycas2020_web_scraping
https://github.com/jpiaskowski/pycas2020_web_scraping

Bonus Slide!

33/33

