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A Road in Auvers After the Rain by Vincent Van Gogh
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Goal: Make everyone feel more comfortable using spatial stats when

analyzing field experimental data.
(you don’t have to be a geospatial statistics expert)
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Where to Find This Information

This Presentation:

A longer tutorial:

https://github.com/IdahoAgStats/lattice-spatial-analysis-talk

https://idahoagstats.github.io/guide-to-field-trial-spatial-analysis
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What Are Barriers to Using Spatial Stats?

Perceived lack of need

Unsure of benefits

No training in the topic/intimidated by the statistical methodology

Limited time to devote to statistical analysis

Unclear what would happen to blocking if spatial stats are used

very few resources for easy implementation

·

·

·

·

·

·
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Spatial Variation in Agricultural Fields

Univeristy of Idaho’s Parker Farm (Moscow, Idaho)
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Spatial Variation in Agricultural Fields
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Blocking in Agricultural Fields
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Blocking versus Spatial Analysis

This is not how this works. Blocking is compatible with spatial analysis and
recommended for most (all?) field trials.
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There Are Many Spatial Methods Available

areal data correlated error models

row and column trend exponential

nearest neighbor spherical

separable ARxAR models Gaussian

spatial error model Matern

spatial lag model Cauchy

ARIMA power

splines linear

GAMs many more…
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These Methods Work
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These Methods Can Be Complex

….But

You can also integrate spatial methods
into gridded field trials without:

Knowing these things is helpful, but not
essential.

1. having to know anything about map
projections, shapefiles or other
geospatial terminology

2. possessing a deep understanding of
linear modeling techniques or
empirical variograms

3. being an R or SAS programming
expert
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A Typical Experiment

Experimental treatments

fully crossed effects

Blocking scheme along the expected direction of field variation

·

·

·
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Analysis

A typical linear model:
\(Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}\)

Response = trial mean + treatment effect + block effect + leftover error

We Assume:

\[\epsilon_i \sim N(0,\sigma_e)\]

How often is #2 evaluated?

1. The error terms, or residuals, are independent of another with a shared
distribution:

1. Each block captures variation unique to that block and there is no other
variation related to spatial position of the experimental plots.
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Example Analysis
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Average Yield by Row, Column and Block
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Standard Analysis of Kimberly, 2013 Wheat
Variety Trial

\(Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}\)

36 soft white winter wheat cultivars

4 blocks

2 missing data points

the linear model:

·

·

·

·

library(nlme)
lm1 <- lme(yield ~ cultivar, random = ~ 1|block, data = mydata, na.action = na.exclude)
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What Do The Residuals Look Like?

plot(lm1)
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What Do The Residuals Look Like Spatially?
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What Do The Residuals Look Like Spatially?
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Global Moran’s Test for Spatial Autocorrelation

\(H_0\): There is no spatial autocorrelation
\(H_a:\) There is spatial autocorrelation!

This uses a simple weighting matrix that weights all neighbors that share a plot
border (the chess-based “rook” formation) equally.

## 
##  Monte-Carlo simulation of Moran I
## 
## data:  mydata$residuals 
## weights: weights 
## omitted: 88, 97 
## number of simulations + 1: 1000 
## 
## statistic = 0.15869, observed rank = 997, p-value = 0.003
## alternative hypothesis: greater
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Handling Spatial Autocorrelation in Areal Data

Areal data = finite region divided into discrete sub-regions (plots) with
aggregated outcomes

Options:

1. model row and column trends

2. assume plots close together are more similar than plots far apart. The errors
terms can be modelled based on proximity, but there is no trial-wide trend

good for known gradients (hill slope, salinity patterns)·

autoregressive models (AR)

models utilizing “gaussian random fields” for continuously varying data
(e.g. point data)

Smoothing splines

nearest neighbor

·

·

·

·
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Basic Linear Model

\[Y_{ij} = \mu + A_i + \epsilon_{ij}\] \[\epsilon_i \sim N(0,\sigma)\]

If N = 4:

\[e_i ~\sim N \Bigg( 0, \left[ {\begin{array}{ccc} \sigma^2 & 0 & 0 & 0\\ 0 &
\sigma^2 & 0 & 0\\ 0 & 0 & \sigma^2 & 0\\ 0 & 0 & 0 & \sigma^2 \end{array} }
\right] \Bigg) \]

The variance-covariance matrix indicates a shared variance and all off-diagonals
are zero, that is, the errors are uncorrelated.

23/45



Linear Model with Autoregressive (AR) Errors

Same linear model: \[Y_{ij} = \mu + A_i + \epsilon_{ij}\]

Different variance structure:

\[e_i ~\sim N \Bigg( 0, = \sigma^2 \left[ {\begin{array}{cc} 1 & \rho & \rho^2 &
\rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2
& \rho & 1 \\ \end{array} } \right] \Bigg) \]

\(\rho\) is a correlation parameter ranging from -1 to 1 where 0 is no
correlation and values approaching 1 indicate spatial correlation.

The “one” in AR1 means that only the next most adjacent point is considered.
There can be AR2, AR3, …, ARn models.

·

·
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The Separable AR1 x AR1 model

AR1xAR1 assumes correlation in two
directions, row and column.

It estimates \(\sigma\),
\(\rho_{column}\), and \(\rho_{row}\)

often a good choice since plot are
rectangular and hence
autocorrelation will differ by
direction (“anistropy”)

·

·

·
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More Notes on Separable AR1xAR1

From a statistical standpoint, it’s one of the more intuitive models

The implementation in R is a little shaky

It is implemented in SAS

Some proprietary software implements this (AsREML), others do not
(Agrobase)

·

·

several packages, all hard to use and incompatible with other R packages-

·

·
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Semivariance and Empirical Variograms

A measure of spatial correlation based on all pairwise correlations in a data set,
binned by distance apart:

\(\gamma^2(h) = \frac{1}{2} Var[Z(s+h)-Z(s)]\)
\(Z(s)\) = observed data at point \(s\).
\(Z(s)\) = observed data at another point \(h\) distance from point \(s\).

For a data set with \(N\) observation, there are this many pairwise points:

\(\frac{N(N-1)}{2}\)
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Empirical Variogram

This uses semivariance to mathematically relate spatial correlations with
distance

range = distance up to which is there is spatial correlation sill = uncorrelated
variance of the variable of interest nugget = measurement error, or short-
distance spatial variance and other unaccounted for variance
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Semivariance & Empirical Variograms

There are many difference mathematical models for explaining semivariance:

It is usually used for kriging, or prediction of a new point through spatial
interpolation

It can also be used in a linear model where local observations are used to
predict a data point in addition to treatment effects

Bonus: R and SAS are really good at this!

·

exponential, Gaussian, Matérn, spherical, …-

·

·

·
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Adding Semivariance to a Linear Model

Copy data into new object so we can assign it a new class (and remove missing
data):

Establish coordinates for data set to make it an sp object (“spatial points”):

Set the maximum distance for looking at pairwise correlations:

library(gstat); library(sp); library(dplyr)
mydata_sp <- mydata %>% filter(!is.na(yield))

coordinates(mydata_sp) <- ~ row + range

max_dist <- 0.5*max(dist(coordinates(mydata_sp)))
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Adding Semivariance to a Linear Model

Calculate a sample variogram:

semivar <- variogram(yield ~ block + cultivar, data = mydata_sp,
                        cutoff = max_dist, width = max_dist/12)
nugget_start <- min(semivar$gamma)
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Adding Semivariance to a Linear Model

The empirical variogram:

plot(semivar)
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Adding Semivariance to a Linear Model

Set up models for fitting variograms:

Fit the variogram models to the data:

vgm1 <- vgm(model = "Exp", nugget = nugget_start) # exponential
vgm2 <- vgm(model = "Sph", nugget = nugget_start) # spherical
vgm3 <- vgm(model = "Gau", nugget = nugget_start) # Gaussian

variofit1 <- fit.variogram(semivar, vgm1)
variofit2 <- fit.variogram(semivar, vgm2)
variofit3 <- fit.variogram(semivar, vgm3)
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Adding Semivariance to a Linear Model

Look at the error terms to see which model is the best at minimizing error.

The spherical model is the best at minimizing error.

## [1] "exponential: 26857.3"

## [1] "spherical: 26058.3"

## [1] "Gaussian: 41861.0"
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Adding Semivariance to a Linear Model

plot(semivar, variofit2, main = "Spherical model")
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Adding Semivariance to a Linear Model

Extract the nugget and sill information from the spherical variogram:

nugget <- variofit2$psill[1] 
range <- variofit2$range[2] 
sill <- sum(variofit2$psill) 
nugget.effect <- nugget/sill  # the nugget/sill ratio
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Adding Semivariance to a Linear Model

Build a correlation structure in nlme:

Update the Model:

cor.sph <- corSpatial(value = c(range, nugget.effect), 
                  form = ~ row + range, 
                  nugget = T, fixed = F,
                  type = "spherical", 
                  metric = "euclidean")

lm_sph <- update(lm1, corr = cor.sph)
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Compare Models - Log likelihood

logLik(lm1)

## 'log Lik.' -489.0572 (df=38)

logLik(lm_sph)

## 'log Lik.' -445.4782 (df=40)
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Compare Models - Post-hoc Power

anova(lm1)[2,]

##          numDF denDF F-value p-value
## cultivar    35   103  1.6411   0.029

anova(lm_sph)[2,]

##          numDF denDF  F-value p-value
## cultivar    35   103 2.054749  0.0028
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Compare Model Predictions

library(emmeans)
lme_preds <- as.data.frame(emmeans(lm1, "cultivar")) %>% mutate(model = "mixed model")
sph_preds <- as.data.frame(emmeans(lm_sph, "cultivar")) %>%
  mutate(model = "mixed model + spatial")
preds <- rbind(lme_preds, sph_preds)
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Compare Model Predictions

Highest yielding wheat: ‘Stephens’ (released in 1977)
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Where Was Stephens Located in the Trial?
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More Notes

When models omit blocking, the predictions may be unchanged or they may
worsen. This varies by the agronomic field, but in general, blocking a field trial
and including block in the statistical model improves your experimental power
and controls experimental error.

There is no single spatial model that fits all

However, using any spatial model is usually better than none at all

When you use spatial covariates, your estimates are better and more precise.
This really does help you!

·

·

·

·
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